
Tools for Monitoring and Controlling
Distributed Applications

-61-. c/'?___
Keith Marzullo*

Mark D. Wood** //_"-

TR 91-1187
February 1991 (_ / "_

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency
(DoD) under NASA Ames grant number NAG 2-593, Contract N00140-87-C-8904.
The views, opinions and findings contained in this report are those of the authors and
should not be construed as an official Department of Defense position, policy or
decision. This work was also supported by a grant from Xerox.
**This author was also partially supported by a G.T.E. Graduate Student Fellowship.

k

Tools for Monitoring and Controlling

Distributed Applications

Keith Marzullo °

marzullo@cs.cornell.edu

Mark D. Wood t

wood@cs.cornell.edu

Cornell University

Department of Computer Science

Ithaca, New York 14853

November 16, 1990

Abstract

The Meta system is a UNiX-based toolkit that assists in the con-

struction of reliable reactive systems, such as distributed monitoring

and debugging systems, tool integration systems and reliable distrib-

uted applications. Meta provides mechanisms for instrumenting a dis-
tributed application and the environment in which it executes, and

Meta supplies a service that can be used to monitor and control such

an instrumented application. The Meta toolkit is built on top of the

Isls toolkit; they can be used together in order to build fault-tolerant
and adaptive distributed applications.

"Thiswork was supportedby the DefenseAdvanced ResearchProjectsAgency (DoD)

under NASA Ames $,rLntnumber NAG 2-593,ContractN00140-87-C-8904.The views,

opinions,sad f[ndin_containedinthisreportare thoseofthe authorsand shouldnot

be construedasan officialDepartment ofDefenseposition,policy,ordecision.This work

was alsopartiallysupportedby a grantfrom Xerox.

tTh_s amhor was also partially supported by a G.T.E. Graduate Student Fellowship.

1 Constructing Reactive Systems

In a reactivesystem architecture,the system ispartitionedintotwo pieces:

an environment that followsa basiccourse of action,and a controlpro-

gram thatmonitors the stateof the environment in order to influencethe

environment'sprogress.This architectureisverygeneral.For example, pro-

cesscontrolsystems,system monitors and debuggers,and toolintegration

servicesallhave a reactivesystem structure.

Another applicationofthereactivesystem architectureisthe structuring

of distributedapplications.For example, many distributedapplicationsare

constructedby takingoff-the-shelfprograms and connectingthem with some

communication subsystem. Such an applicationcan be thought of as an

"environment" with a stateincludingthe propertiesof machines running

the application,currentperformance of the component programs, and the

stateof the communication subsystem. The job of the controlprogram

is to monitor the stateof the applicationin order to guarantee that the

system operatesefficientlyinspiteofchanging loadand failures.The control

program can alsobe used to interconnectthe application'scomponents ina

more looselybound manner than conventionalRPC mechanisms.

The Meta system,describedin thispaper,isa UNIX1-based toolkitthat

providesthe basicprimitivesneeded to build a non-real-timereactivesys-

tem. Using the toolkit,a distributedprogram can be instrumented with

sensorsand actuatorsin order to expose itsstateforpurposes of control.

Meta providesmechan.ismsthat allowa controlprogram to query the state

of the instrumented applicationand to respond by invokingactuatorswhen

some conditionofinterestoccurs.The toolkitincludesfacilitiesforstructur-

ingindividualcomponents intocollectionsofcomponents forfault.tolerance.

In addition,Meta guaranteesthatthe monitoringand reactionisdone atom-

ically.

Meta itselfisbuilton top of anothertoolkit,the !slssystem. The appli-

cationdesignercan use Islsforfault-tolerantcommunication and Meta for

distributedcontrol In fact,the Meta projectwas startedwhen fourof us in

the IslSprojectworked on integratinga distributedapplicationconstructed

from off-the-shelfcomponents [MCWB90]. The facilitywe found lackingin

Islswu support fordistributedcontrol.

The next sectionintroducesthe architectureof an applicationmanaged

by Meta. Section3 presentshow applicationsare instrumented,and Sec-

UNIX is a trlgiematk of A.T.&T.

tion 4 discusses how the resulting application is controUed. Finally, Section 5

presents the current status of Meta and discusses our future plans.

2 The Meta Architecture

The architecture of Meta can be illustrated through an example of managing

a distributed application. Consider an application that includes services

and clientsmaking use of the services.A given serviceconsistsof a set of

identicalserversreplicatedboth for fault-toleranceand for coarse-grained

parallelism.Meta willbe used to manage the services;in particular,if

the load on a serviceis too largeor the number of serversbecomes too

small due to crashes,then a new serveris to be startedand added to the

service. Additionally,ifa server'squeue becomes too long, then waiting

requestsare to be migrated to less-loadedserversin the service.There are

other conditionsthat would probably need to be maintained as well,such

as reducingthe number of serverswhen appropriate,but forsakeof brevity

we willkeep our example limited.

Meta structures a distributed application Using a data model based on

the entity-relation data model [Che76], with each instrumented component

(i.e., a program equipped with sensors and actuators) being viewed as an
entity and its sensors and actuators being the attributes of that entity. For

example, a server in the above example could be instrumented with sensors

that give the server's load and the queue of waiting requests. Entities of the

same type, that is, having the same set of sensor and actuator attributes.

form an entity set.

Subsets of an entity set may be grouped together to form aggregates.

Aggregate structures provide control programs with a way of grouping re-

lated entitiestogetherand limitingactionsto members of that group. For

ex_ple, the serversc0mp_sing=aservice can be grouped intoan aggregate

representingthe service.Aggregates are themselves entities,and the sys-

tem architectcan definesensorsand actuatorson aggregates.An aggregate

sensorisa functionover the stateof allthe members of the aggregate.For

example, a service=a_egate couldhave a sensorthatgivesthe median queue

lengthof the serversinthe service.An a_regate actuatorcausesan action

to be performed on some subset(from one to all)of the currentmembers.

A distributed application is managed through the use of guarded com-

mands; that is, through a set of (condition, act/on) p_s that reference the
sensors and actuators of the instrumented application. These commands

are executed by interpretersthatresidein 8tubs(somewhat likeRPC stubs)

coresidentwith the instrumented programs, thus allowingfor fastnotifi-

cationand reaction.Each conditionisa propositionon the stateof sys-

tem; referencesto both localsensors--withinthe entityto which the stub

isattached--and non.localsensorsare allowed.The actionportionisa se-

quence of actuatorinvocationsthat are executed atomically.Actions may

enableguarded commands on another Meta stub;thisfacilityallowsone to

writecontrolprograms thatspan multiplecomponents.

Sinceguarded commands areevaluatedin the same addressspace as an

instrumented program, theirimpact on the performance of the application

is a concern. The syntax of the guarded command language (a postfix

language calledNPL) istailoredfor fastand ef_cientevaluation,and so

we do not expect programs to be writtendirectlyin thislanguage. _Ve

are designingan object-orientedcontrollanguage calledLom{ta [MCWBg0]

that can be used to describethe structureof the applicationand to specify

itscontrolbehavior. A Lomita program containsa schema specifyingthe

entityand aggregatestructurealong with theirsensorsand actuators.The

controlbehaviorof the applicationisspecifiedin Lomita through the use of

rules,where the conditionsforthe rulemay includereal-timeintervallogic

expressions[SMSV83]. Such temporal expressionsare compiled intofinite

state automata, where the state transitionsare implemented using _leca

guarded commands.

Figure 1illustratesthe useofstubs.The machine M1 isrunning a server

that has been instrumented,so thereisa stub running in the same address

space as thisserverthatcan directlyaccessthe sensorsand actuatorsof the

server.The machine isalsorunning a separateMeta-suppliedprogram ac-

cessingthe variouspropertiesofthe machine and itsoperating'system,such

as the amount ofavailablememory and the processorload.This program is

instrumented,and so has a stub thatsupportsa setofsensorsand actuators

over the machine and operatingsystem state.

3 Application Instrumentation

An applicationfirstmust be instrumentedbeforeitcan be controlled.This

isaccomplished by insertinginto the applicationa small amount of code,

and then linkingthe applicationwith a Meta library.This sectiondescribes

the instrumentationprocessinmore detail.

"machine"

stub
i

machine

process

Userver"

stub

server

M1

Figure I: An Instrumented Component

3.1 Access to Base Values

A sensorprovides accessto the value of some underlying system vaxiable.

An applicationdefinesa sensorwith a Meta libraryroutine:

meta_ new. sensor(svr, q. length, "load", TYPE_ INTEGER, min_ period);

This routinecreatesan integer-v'_uedsensornamed "load". When this

sensorisreferenced,the functionswr_q_lengthin the instrumented program

iscalled,which presumably_returnstke numb_e_rofentr!_ on the=server's

work- queue, = _/._ _i_i_

...._areactive system: the_i_act that a sensor's_v_ue'has-_mged isas im-

portanttoknow as thecurren_vM_ueofthesensor.There aretwo methods by

which an applicationcan alertitsstub thata sensor'svaluehas changed. In

some cases,a sensor'svaluechangeseitherslowlyor regularly,_ w_ch case

a lowerb0_und on the time between ch_ges in itsvalue can b'edetermined.

The applicationtellsthe stub thislower bound as the fourthparameter of

the metLnew.sensor call.This valuestateshow long thatsensor'svaluecan

be cached beforerepollingisneeded. In othercases,itwould be very hard

to determine such a lower bound. In thiscase,the fourthparameter of the

metLnew.sensor calliszero,and the stub willobtaina freshvalueonly when

the applicationmakes an upcallto the stub. Such upcailsnever block and

can be made even when a nonzero pollingperiodhas been specified.

Actuators providethe means through which Meta actsupon the system.

Like sensors, sctuators are implemented by function calls in the application

program. Actuators can be parameterized and can return either success or

failure.

3.2 Functional Composition

A controlprogram may wish tomonitor a sensorwhose valueisa functionof

an existingsensoror sensors.For example, the controlprogram may wish to

monitor the maximum loadof a serveror the differencebetween two queue

lengths supported by a server. Such sensorscan be easilydefined using

Meta. A stub can constructfunctionsof the sensorsitsupports and can

defineadditionalsensorsin terms of thesefunctions.The stub ensuresthat

the sensorscomprisingsuch a sensorare sampled atomically.A extensive

collectionof pre-defmed functionsare available,and thiscollectioncan be

augmented with user-definedfunctions.

3.3 Aggregates

An aggregate has, as predefined sensors, set-valued versions of the sensors

on the components comprising the aggregate. For example, if a component

has an integer sensor named load, then an aggregate of this component has

a group sensor named load whose type is "set of integers" and whose value
is the set of loads of the components. Other aggregate sensors can then be

defined as functions of group sensors.

Just as an aggregate inherits the sensors of its components, an aggregate

also inherits the actuators of its components. For example, if a component

has an actuator named run, then an aggregate of this component has a group

actuator named TUn. An invocation of the group actuator run invokes all of

the component run actuators.

3.4 Fault-Tolerance

When necessary,sensorfault-toleranceisachievedthrough replication.The

process containingthe sensorto be made fault-tolerantisreplicated,and

the replicas are grouped into an aggregate; the value of the fault-tolerant,

aggregate sensor is then a function of the members' sensor values [Schg0].

The severity of sensor failures that can be tolerated depends on the choice

of aggregate function. For example, to provide tolerance to crash failures,

the aggregate function need only pick one of the member's values to return
as the sensor value. In this case, the availability of the sensor is the same as

the availability of any member of the aggregate. In process control systems,

however, a real-worldsensorsuch as the temperature of a reactionvessel

can be representedas an intervalbounding the actualvalueof the quantity

being measured. In this case, a fault-tolerant intersection function can be

used to mask arbitraryfailuresofsensors[MW90,Mar90].

Group actuatorsare usefulforachievingfault-tolerancein thatthey can

be used to implement coordinator-cohortbased actuation[ISIg0].When

invokinga group actuator,the command can includetwo additionalparam-

eters:an integerspecifyingthe number ofindividualactuationsto perform,

and a preferencelistofaggregatemembers which indicateswhich aggregate

members to tryfirst.Ifthe chosen actuatorfails,then another member will

be pickedaccordingto the preferencelistuntilthe number ofrequestedactu-

ationsisachievedor can not be achieved,inwhich casethe group actuation

fails.

4 Control

Once an applicationisinstrumented,a controlprogram can be written.The

basis for controlling applications in Meta is a language of guarded commands

that reference the state of the instrumented application.

4.1 Interpreting Guarded Commands

Each Meta stub implements a guarded command interpreter that has direct

access to the sensors and actuators of the component to which the stub

is attached. A stub can reference sensors and actuators not local to the

component by communicating with the interpreter that does have direct

access.The name of a sensoror actuatorissufficientfor the Meta system

to resolvewhich interpreterhas directaccess. So, a guarded command

can be executed by any stub, although some stubs would provide better

performance than others.

Since aggregatesare not representedby a singlecomponent in the ap-

plication,some stub must be selectedtomaintain the definitionsof a given

aggregate'ssensors(and actuators).Exactly which stub computes the ag-

gregatevaluesisup to the applicationdesigner;eitheran existingstub or a

"Meta server"(a stub instrumentinga dummy process)can be designated

to do so,and other stubs can be designatedas cohort_ that willtakeover

in case the stub instrumentingthe aggregatefails.This approach central-

_Thete cohort, should not be confused with the cohort._n the ISIS Coordinator.cohort
facility, although the concept is the same. We are currently investigating how to best
implement thi_ structure.

7

izes the computation of aggregate values, which in turn facilitates providing

consistent views of the aggregate's state.

The interpreters for Meta guarded commands may also be made fault-

tolerant through replication. In this case, one interpreter is responsible for

executing a given guarded command while the others remain as standbys.

Sufficient state is exchanged among the replicas so that one of the standbys

can take over in case the primary interpreter fails.

In our client-server example, the servers of a service axe grouped into an

aggregate. Each member of the aggregate (a server) has been instrumented,
as described previously in Section 3, with a sensor that gives the load of the

server. An aggregate sensor can then be defined that provides some measure

of the service load, such as the median load of all the servers. If each server

is equipped with an actuator that accepts a request for migration, then

reliable migration can be implemented by invoking the set-valued aggregate
actuator with the number of actuations specified as one and the preference

list selected, for example, from the servers' loads. The stub that implements

the aggregate sensors and actuators could be one of the servers in the service

(presumably in the server stub) or a separate Meta server.

4.2 Atomic Guarded Commands

Recall that a guarded command consists of a set of (condition, action) pairs.

A condition is a propositional expression over the sensor values, and an

action is a sequence of parameterized actuator invocations. Ideally, NIeta

would ensure that the action is executed as an atomic command, that is,

atomically and consistently with respect to its triggering condition [LS84].

When a predicate becomes true, the action should be executed in the

same state in which it was triggered, but due to the asynchrony in the envi-

ronment this can not be done without introducing blocking. Instead, Meta

guarantees that any reference to sensor values during the action sequence
obtains the same value as when the condition was triggered. Another prop-

erty of atomic actions is that either all of the _tion is executed or none

of it is executed. Providing this property requires a transactional facility

with the ability either to undo the effects of partial actions or to invoke a

forward recovery mechanism. Additionally, to provide consistent execution,

the intermediate states of the action should not be visible to other guarded

comman&.

Meta currently provides only a limited amount of atomicity. For exam-

ple, if a guarded command references only the sensors and actuators of a

single component (either simple or aggregate), then its execution wiLl be

atomic. This amount of consistency is all that is needed for our client-server

problem. For example, Meta will guarantee that if a machine is selected and

removed from a _ee-mach_ne agA_regate when starting a new server, then

the selection and remov'M wi_ be done atomically (in this case, by using the

coordinator-cohort facility of Isis). Other applications will require stronger

guarantees of atomicity, however, so we are currently examining mechanisms

that willenforcestrongerguaranteesofatomicitywhen necessary.

4.3 Example

Figure 2 shows part of a Lomita descriptionof our client-serverappli-

cation.The descriptionfirstdefinesthe schema for serverentities.In this

simpl_ed presentation,a servercontainsseparateactuatorsforstartingand

stopping & _ob,_ith_bs bring named by a string_For the Sake of dis-

cussion,we assume thata job may be startedand stopped repeatedly.The

serviceaggregatehas the sensorsloadwhich isdefinedtobe the median load

of the individualsensors.The run actuatorstartsa job on some member of

the aggregate,and the preferencelistspecifiesthat the member should be

selectedon the.....basis0fitsload.

The two rulesshown inthisfigureaxe compiled intoNPL programs. The

firstrulestatesthata job shouldbe migrated from a serverwhose loadistoo

high. This rulecan be translatedintoa singleguarded command that can

run inthe server'sstub. The followingC calldistributesthe NPL command

to allserverentities:

m eta_npl("server",
"load S > GUARD jobs F_rst 'job' BIND job suspend
job servic_'JobService').run");

This guarded command containsthe conditionalpredicateload > 5 and

then the actionsequenceofbindingthe variablejob to thefirstjob on thejob

list,suspending thatjob,and then resubmittingitforexecutionby invoking

the service a_gre_te operatorrun.
The second nileismore complex; itstatesthatifthe sizeof a serviceis

too smMl or the load remains high for too long,then a new servershould

be started.The Lomita compilerwould translatethisruleintoa finitestate

automaton, which in turn would be implemented by a setof Meta guarded

commands.

server" entityset
attributes

key name : string:

sensor load: integer;

sensor jobs: (string);

actuator stop(string);
actuator start(string);

end

end

service: server aggregate
attributes

key port : string - "JobService";
sensor sload : integer -- median(toad);

actuator run(job : string) = start(job)[load,l,"<='];
actuator create = ...,

end

end

when server(Name).load > 5 do

job = F;rst(server(Name).jobs);

server(Ha me).suspen d(job);

service("JobService").run(job);
end

when SIZE(service('JobService")) < 3 or
durin s service("JobSsrvice").sload > 5/'or 60

,.lways ssrvice("JobService").sJosd) > 5
do

cr.t.(...);
end

Figure 2: Job Service

10

5 Discussion

The Meta projecthas explored the feasibilityof toolkit-basedarchitecture

for buildingreactivesystems and has applied thisapproach to distribu-

ted applicationmanagement. Meta provides a uniform way of intercon-

nectingdisparatecomponents, facilitatingboth the designof new systems

and the constructionof systems glued togetherfrom existingapplications.

Our approach has the benefitofseparatingmanagement policiesfrom their

implementation--thatis,how thosepoliciesare carriedout.

5.1 Related Work

Although much work has been done on system monitoring,our work differs

in thatitcombines controlwith monitoringto providethe generalarchitec-

turalsupport needed to constructa classofreactivesystems. A prominent

example of a system designed strictlyfor monitoring isthe work of Shod-

grass[Sno88];in hiswork, the system stateiscastas a temporal database.

Systems fordebugging (especiallythosefordebugging distributedsystems),

are a specializationof generalmonitoring systems. These systems provide

a way to accessthe system stateand to watch forcertainpredicatesto be

satisfiedthrough the use of breakpoints[MH89,Bat88]. Of particularinter-

est is the system IDD [HHK85] that permits intervallogicexpressionsin

specifyingbreakpoints.

Lomita isa rule-basedlanguage builton a real-timeextensionofinterval

logic.The rule-basedlanguage we have found most similarto Lomita is

L.0 [CCNSg0]. However, thisexecutablelanguage does not dealwith the

problem of instrumenting existingapplicationsnor does it use a sensor-

actuatordata model. Configurationsystems such as Conic [KMS89] overlap

with the use of Meta for distributed application management in that they

facilitate interconnecting components, but they lack the means for specifying

reactive behavior.

5.2 The ISIS System

Much ofMeta depends upon facilitiesprovidedby the Islstoolkit.One such

facilityisthe notionof a group. An Islsgroup isa named dynamic setof

processes.Each member Of the group has the same view of which processes

are currentlyin the group despiteother processesasynchronouslyjoining

the group,leavingthe group and crashing.Among other uses,Meta uses

11

Isls process groups to implement atomicity of aggregate invocation and to

organize the members of an aggregate.

Providing consistent behavior in Meta relies heavily upon the notion

of virtual s!mchrony provided by the Isis system [BJ8?]. The Isis system

make asynchronous events such as message receipts and group membership

changes appear to happen synchronously. This property greatly facilitates

reasoning about system behavior and constructing a system that behaves
in a consistent manner. Fundamental to this property is the notion of an

ordered broadcast. Isls provides two important broadcast primitives [JBSg]:

abcast, which totally orders the broadcasts to a group, and cbcast which

partially orders the broadcasts to a group dependent on the causal order of
the broadcasts. For example, if two apparently concurrent events occur in

the instrumented application, Meta can impose a global total order on these

events by using abcast.

5.3 Status

Severaliterationsof prototypeshave been builtwith the latestbeing avail-

ablefrom CorneU as partofthe ISIStoolkit.Work iscurrentlyunderway on

a major releasesupportingthe complete functionalitydescribedhere. Pre-

liminary performance figuresfrom thiswork show the system to impose a

low amount ofoverhead. The followingbenchmarks were obtained by run-

ning Meta on Sun 4/60'swith interprocesscommunication handled by ISIS

over a 10 Mbps Ethernet.

The time to execute a simpleguarded command of the form A GtJAR0

[3with triviallocalsensorA and triviallocalactuator 8 is84.1microsec-

onds,with uncertaintylessthan .imicrosecond.This impliesapproximately

12,000guarded commands can be executed a second.
The bulk of the time forremote actionsisof coursein the message de-

livery.The ISIScausalbroadcast(cbcast)takes14.4milliseconds_;the ISIS

atomic broadcast abcast takesup to twice as long. Running the previous

simple guarded command at a remote interpretertakes 32.6 milliseconds.

This figureincludesone cbcastto the interpreterto reportthe valueand an

abcastfrom the interpreterto effectthe actuation.

The act of referendng a remote sensor has some initialstart-upcost,

which we callthe subacriptioncost.Upon receivinga subscriptionrequest

3Performanceiigu_moftheorderofmillisecondsareaccuratetowithin.2milliseconds
witha confidenceof95 percent,exceptfozthetimetosubocribe,whichisaccurateto
within1.1milliseconds.

12

from someremoteinterpreter,a Meta stub willreport allchanges in the

sensor'svalue to the subscriber.To get a feelforthe subscriptioncost,we

measured the time need to do the following:send to the localinterpretera

guard that immediately triggersand causesthe interpreterto subscribeto

a remote sensor,get the firstvalue,and cancelthe subscription.This time

was measured to be 66.2milliseconds.This figureincludesthe time to parse

the guard, but the costof thisshould be negligible,lessthan one percent.

Note thattheguard issentlocallyviacbcastratherthan viaa (faster)direct

procedure callbecause we wish to support replicationof interpreters.The

cbcast thereforeresultsin communication with the ISIS protocolserverfor

thatmachine.

Note that allcommunication in Meta goes through the ISIS protocol

server,a separateprocessrunning on each machine. Newer versionsofISIS

now under development allowfor restrictedtypes of broadcaststo be sent

directlyto theintended recipients,bypassingtheISIS protocolservers.This

resultsin considerablesavings;a cbcastof thisform only costs5.6millisec-

onds. The bypass mode of communication requiresthe sender and receiver

to be in the same group,which isnot typicallythe casein Meta. However,

the currentimplementation of Meta does put aggregatesinthe same group,

opening the way to use the bypass mode of communication, and we are

currentlyexploringways of exploitingiteven further.:-:_:-_

Previousversionsof Meta have been released,bu___hesedid not support

the complete NPL language but insteadhad the notionofa watch,inwhich a

Meta stub couldbe instructedtowaitforthe valueofsome sensorto satisfy

some relation.This earlierwork has emphasized the benefitof detecting

conditionsas closeas possibleto the siteat which they become satisfied.

We are currentlybuildinga network manager as a testapplicationfor

Meta, and are designinga debugging and monitoring tooland a system

configurationsystem.

5.4 Directions

The current Meta toolkit is adequate for use in systems in which timing

isnot crucial.Although guarded commands can make temporal assertions,

given the potentiallyunbounded latenciesin the underlyingUNIX and Isls

platforms,such assertionscan onlybe viewed asapproximate upper bounds.

However, the structurethatMeta providesisgeneralenough thatwe should

be ableto extend itto real-timereactivesystems as well.

There aretwo main obstacleswe see toextendingkfetato real-timesys-

13

terns. The first has to do with the underlying Islstoolkit;to guarantee

bounded reactiontime, the underlyingcausalbroadcast and group mem-

bership protocolsmust provide some real-timeguarantees. A companion

projectin the ISIS group iscurrentlylookinginto structuringIslsunder

Mach to provide thesetwo protocols.The second obstaclehas to do with

the semantics of guarded commands. Guarded commands currentlyhave

the semanticsof atomic actions;ifa guarded command iscontinuouslyen-

abled,then itwilleventuallyexecute.We need to add an upper bound on

how long the command can be enabled without executing,and then build

a schedulerthateitherguaranteesthe command willbe executed withinits

deadlineor abortsthe commandif itcannot be executed withinitsdeadline.

Acknowledsements Severalpeoplehave contributedto theMeta project.

Nancy Thoman designed and wrote the firstversionof the guarded com-

mand language,and Wanda Chiu designed a reactiverelationaldatabase

that provided a testbedforearlierversionsof Meta. Kenneth Birman and

Robert Cooper have contributedmuch to the designof the overallsystem.

We would alsoliketo thank Robert Cooper and Laura Sabel fortheirhelpful

comments on earlierdraftsofthispaper.

References

[Bat88]

[BJ87]

[CCNS90]

[Che76]

PeterBates. Debugging heterogeneousdistributedsystems us-

ing event-basedmodels of behavior. In SIGPLAN/SIGOPS

Workshop on Pardllel and Distributed Debugging. ACM, 1988.

Ken Birman and Thomas Joseph. Exploitingvirtualsynchrony

in distributed systems. In Proceedings of the Eleventh Sym.

posium on Operating System Principles, pages 123-138. ACM

SIGOPS, 1987.

E. J. Cameron, D. M. Cohen, L. A. Ness, and H. N. Srinidhi.

L.0:A language formodeling and prototypingcommunications

software.TechnicalReport ARH-015547, BeUcore, April 1990.

P. P.-S.Chen. The entity-relationshipmodel--toward a unified

view of data. A CM Transactions on Database Systems, 1(1):9-

36, March 1976.

14

[HHK85]

[ISI9O1

[JB89]

[KMS89]

[LS84]

[Mar90]

[MCWB9O]

[MHSg]

[MW90]

[SchgO]

Paul K. Hatter, Dennis M. Heimbigner, sad Roger King. IDD:

An interactive distributed debugger. In Proceedings of the Fifth

International Conference on Distributed Computing Systems,

pages 498-506, 1985.

Cornell University, Department of Computer Science, Upson

Hall, Ithaca, New York 14853. ISIS. A Distributed Pro-

gramming Environment. User's Guide and Reference Manual,
March 1990.

Thomas Joseph and Kenneth Birmsa. Reliable Broadcast Pro-

tocols, pages 294--318. ACM Press, New York, 1989.

Jeff Kramer, Jeff Magee, sad Morris Slomsa. Constructing

distributed systems in Conic. IEEE Transactions on Software

Engineering, SE-15(6):663-675, ffune 1989.

Leslie Lamport sad Fred B. Schneider. The "Hoare logic" of

CSP, and all that. ACM Transactions on Programming Lan.

guages and Systems, 6(2):281-296, April 1984.

Keith Marzullo. Toleratingfailuresof continuous-valuedsen-

sors.TechnicalReport TR 90-1156,CorneU University,Septem-

ber 1990.

Keith Marzullo, Robert Cooper, Mark Wood, and Ken Birman.

Tools for distributedapplicationmanagement. TechnicalRe-

port TR 90-1136,Cornel/University,June 1990. Submitted for

publication.

Charles E. McDowell sad David P. Helmbold. Debugging con-

current programs. ACM Computing Surveys, 21(4), December

1989.

Keith Marzullo and Mark Wood. Making real-timereactivesys-

tems reliable. In Proceedings o.f the Fourth A CM SIGOPS Euro-

pear,Workshop, pages I-6.ACM SIGPLAN/SIGOPS, Septem-

ber 1990.

Fred B. schneider. The statemachine approach: A tutorial.

Computing SurVeys, 22(3), September 1990.

15

[SMSVS3]

[Sno88]

R. L. Schwartz, P. M. MeUiar-Smith, and F. H. Vogt. An inter-

val logic for higher-level temporal reasoning. In Proceedings of

the Second Symposium on Principles ofDistributed Computing,

pages 173-186. ACM SIGPLAN/SIGOPS, 1983.

Richard Snodgrass. A relationalapproach to monitoring

complex systems. A CM Transactionson Computer Systems,

6(2):157-196,May 1988.

16

J

